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Theory of creeping gravity currents of a non-Newtonian liquid
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Recently several experiments on creeping gravity currents have been performed, using highly viscous sili-
cone oils and putties. The interpretation of the experiments relies on the available theoretical results that were
obtained by means of the lubrication approximation with the assumption of a Newtonian rheology. Since very
viscous fluids are usually non-Newtonian, an extension of the theory to include non-Newtonian effects is
needed. We derive the governing equations for unidirectional and axisymmetric creeping gravity currents of a
non-Newtonian liquid with a power-law rheology, generalizing the usual lubrication approximation. The equa-
tions differ from those for Newtonian liquids, being nonlinear in the spatial derivative of the thickness of the
current. Similarity solutions for currents whose volume varies as a power of time are obtained. For the spread
of a constant volume of liquid, analytic solutions are found that are in good agreement with experiment. We
also derive solutions of the waiting-time type, as well as those describing steady flows from a constant source
to a sink. General traveling-wave solutions are given, and analytic formulas for a simple case are derived. A
phase plane formalism that allows the systematic derivation of self-similar solutions is introduced. The appli-
cation of the Boltzmann transform is briefly discussed. All the self-similar solutions obtained here have their
counterparts in Newtonian flows, as should be expected because the power-law rheology involves a single-
dimensional parameter as the Newtonian constitutive relation. Thus one finds similarity solutions whenever the
analogous Newtonian problem is self-similar, but now the spreading relations are rheology-dependent. In most
cases this dependence is weak but leads to significant differences easily detected in experiments. The present
results may also be of interest for geophysics since the lithosphere deforms according to an average power-law
rheology.@S1063-651X~99!09011-X#

PACS number~s!: 47.50.1d
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I. INTRODUCTION

Gravity currents are ubiquitous phenomena that occu
many situations of scientific and engineering interest@1,2#.
Various regimes are possible, according to the relative m
nitude of the forces acting on a typical fluid element.
considerable practical interest is the viscosity dominated
gime called creeping flow. In this regime the motion
nearly horizontal and very slow, so that inertia effects
negligible and the flow is governed by a balance betw
gravity and the viscous forces. The flows of thin layers
highly viscous fluids on a horizontal surface, as well as c
tain magma flows, belong to this class. Recently several
periments on creeping gravity currents have been perfor
~see, for example,@3–6#!. The theory of these flows@7–10#
has been based on the lubrication theory approximation@11#
with the assumption that the fluid is Newtonian. It is n
trivial what changes will result in the theory if the fluid
non-Newtonian, as is the case of many highly viscous liqu
of practical interest. We notice that the silicone oils used
the above-mentioned experiments as well as the silicone
ties used in the analogic modeling of gravity flows of t
earths crust~see @12#! have a non-Newtonian behavio
@13,14,4#. Also, a non-Newtonian constitutive relation is r
quired to describe the rheology of the lithosphere~see, for
example,@15#!. We notice that the deformations of the litho
sphere associated with orogeny can also be describe
PRE 601063-651X/99/60~6!/6960~8!/$15.00
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terms of creeping gravity currents. Scaling laws that desc
the time evolution of mountain belts were derived@16# con-
sidering the combined effect of crustal shortening, isosta
and creeping gravity flow at the root of the belt. Then t
extension of the theory that we presently develop is of c
siderable practical interest.

One of the simplest non-Newtonian models is based
the so-called power-law constitutive relation of the for
@17,18#

t i j 5AE(12l)/l«̇ i j , ~1!

in which t i j is the deviatoric stress tensor,«̇ i j 5(]v i /]xj
1]v j /]xi)/2 is the strain rate, and

E5~ «̇ i j «̇ i j !
1/2 ~2!

is the second invariant of the strain rate tensor (A and the
rheological indexl are constants!. The formula~1! is some-
times known as Ostwald’s or Norton’s constitutive relatio
A power-law rheology such as Eq.~1! is usually accepted a
a good description of the vertically averaged mechan
properties of the lithospheric rocks~see, for example,@19#!,
and is adequate to describe the behavior of many n
Newtonian liquids within appropriate ranges of the stra
rate, like those of the above-mentioned experiments.
6960 © 1999 The American Physical Society
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PRE 60 6961THEORY OF CREEPING GRAVITY CURRENTS OFA . . .
In this paper we develop a theory of the creeping grav
currents of a liquid that obeys the power-law constitut
relation ~1!. We use an approximation~analogous to the lu-
brication approximation for Newtonian liquids! to derive
equations for a current flowing on a rigid horizontal surfa
and show that the thickness of the current satisfies a non
ear parabolic differential equation that is a generalization
the nonlinear diffusion equation usually called the poro
media equation in the mathematical literature. Next we
rive some similarity solutions that describe the flows cor
sponding to various initial and boundary conditions; the
include~i! the spread of a constant volume of the liquid,~ii !
the currents produced by sources located at the origin,~iii !
the steady flow from a source to a sink, and~iv! solutions of
the waiting-time type~analogous to those arising in nonlin
ear diffusion; see, for example,@20,21#, also@22,23# for the-
oretical details, and@4,5# for experiments!. In Cartesian ge-
ometry, the system also allows propagating wave solutio
Finally we set up a phase plane formalism that allows us
investigate systematically the entire family of self-similar s
lutions of the governing equations. We also discuss the B
zmann transform method of solution. A detailed investig
tion of the solutions corresponding to the integral curves
the phase plane is left for future work.

II. THE ‘‘LUBRICATION APPROXIMATION’’ FOR A
NON-NEWTONIAN LIQUID

The governing equations of the creeping gravity flow o
power-law liquid on a rigid horizontal surface are obtain
starting from the following assumptions:~i! the motion is
essentially horizontal~so that the vertical component of th
velocity is negligibly small!, ~ii ! inertia effects are negli-
gible, and~iii ! the length of the current is much larger tha
its depth. These assumptions imply a purely hydrostatic p
sure. In this paper we shall consider only planar and axis
metric flows, i.e., flows that depend on a single horizon
coordinate~Cartesian for planar symmetry, radial for axi
symmetry!. The horizontal coordinate isx, the vertical coor-
dinate isz, andt denotes the time. The acceleration of grav
is g and the constitutive relation~1! is assumed.

With these assumptions, it can be easily shown that thx
and z components of the momentum equation can be
proximated as

]p

]x
22~l21!/2lsA

]

]z S ]uvxu
]z D 1/l

50, s5sgn~vx! ~3!

and

]p

]z
1rg50. ~4!

In Eqs. ~3! and ~4!, r is the density,p the pressure, and
vx(x,z,t) is the horizontal component of the velocity. Notic
that strictly speakings5sgn(]vx /]z), but in our system it
coincides withs5sgn(vx). In deriving Eqs.~3! and~ 4! we
have assumed that the strongest variation ofvx is in z, and
have neglected thex variation ofvx ~which is crucial for the
continuity equation!. In fact we shall sneak in thex depen-
y
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dence through the boundary condition at the free surfacz
5h(x,t), whereh(x,t) denotes the thickness of the curren

Integrating Eq.~4! with the condition that atz5h, p
50, we obtain

p5rg~h2z!, ~5!

which gives the required slowx dependence to the left-han
side of Eq.~3!, i.e.,

]p

]x
5rg

]h

]x
. ~6!

Within the context of the preceding discussion, and w
the boundary conditions~i! no slip at the bottomz50 and
~ii ! no tangential stress atz5h, we can readily integrate Eq
~3! to find

vx5
l12

l11
vF12S 12

z

hD l11G , ~7!

where

v5^vx&5
1

hE0

h

vxdz52~12l!/2lsS rg

A D l hl11

l12 S 2s
]h

]xD l

~8!

is the vertically averaged speed. From Eq.~8! it is obvious
that the sign ofv, as expected, is always opposite to that
]h/]x. The explicit appearance ofs is a necessary conse
quence of the non-Newtonian rheology.

Equation ~8! represents the essence of the moment
transfer equation for this paper. We now take the vertica
averaged continuity equation

]h

]t
1“•~ex^vxh&!5

]h

]t
1“•~exvh!50 ~9!

and combine it with Eq.~8! to give a single equation:

]w

]t
1sx2n

]

]x Fx2nwl12S 2s
]w

]x D lG50, ~10!

where we have defined the ‘‘reduced thickness’’w:

w5al
21h, ~11!

with

al5S 2(12l)/2l~l12!1/l
A

rgD l/(2l11)

, ~12!

in order to absorb the parametersA, r, and g. Notice also
that the indexn50 (n51) signifies Cartesian~axial! sym-
metry.

Equation~10!, or equivalently the set of equations~8! and
~9!, rewritten in terms ofw, i.e.,

v2swl11S 2s
]w

]x D l

50, ~13a!

]w

]t
1x2n

]

]x
~xnwv !50, ~13b!
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are the governing equations for creeping gravity flows in t
generalized lubrication approximation, as they reduce to
usual formulas for a Newtonian fluid.

Equation~10! is a nonlinear parabolic equation of diffu
sive type that is different from the usual equations of non
ear diffusion~see, for example,@24#!. It can be observed tha
the assumption of non-Newtonian rheology (lÞ1) intro-
duces a nonlinearity in the spatial derivative ofw that was
not present in the Newtonian case, so that our generaliza
is not at all trivial. However, we shall show in the followin
sections that many solutions of Eq.~10! are closely analo-
gous to solutions pertaining to Newtonian liquids. It will b
also shown that in many instances the currents are chara
ized by a sharp, well defined front, the current extends up
a certain valuex5xf , and asx→xf the thicknessh vanishes,
there being no fluid ahead of the front. In this connection
will be seen that the present lubrication approximation p
dicts profiles of the formh}Xs, with X5ux2xf u and 0,s
,1. Naturally these vertical profiles are incorrect near
front, where the approximation breaks down. The same p
lem arises in the context of Newtonian liquids and in th
case it has been shown~see the lengthy discussions of@7,8#!
that the model describes correctly the general shape and
namics of the currents, regardless of the fact that the ver
fronts are surely not realistic. We see no reason why
situation should be different in the present case. Actua
various experiments with Newtonian@25,26,3,9# and non-
Newtonian liquids@4,14,6# show that the lubrication approxi
mation describes surprisingly well the motion of the fro
and the profiles of the currents, even quite close to the fr
Accordingly, we shall accept solutions with sharp fron
subject to the qualification that there exists a certain sm
region near the front where their profiles differ marked
from the true solutions.

III. SIMILARITY SOLUTIONS

By making a judicious choice forw, we are left with no
parameters in the governing equations. The variablesw and
v, in fact, have dimensions that can be completely speci
in terms of length@L# and time@T#. We can take advantag
of this fact and expressw andv in terms of two dimension-
less phase variablesZ andV,

w5~xl11t21Z!1/(2l11), v5xt21V, ~14!

which, in general, depend onx, t, and the parameters of th
problem that enter into its specific initial and boundary co
ditions. Substituting Eq.~14! into Eq. ~13!, one finds

sS s
V

ZD 1/l

1
1

l2
S l11

x

Z

]Z

]x D50 ~15!

and

t

Z

]Z

]t
512@l2~n11!1l1#V2V

x

Z

]Z

]x
2l2x

]V

]x
,

~16!

with the definitions

l15l11, l252l11. ~17!
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Let us now assume that the problem involves only o
parameter,b, with independent dimensions. Clearly, it can
assumed without loss of generality that

@b#5LT2d, ~18!

whered is a numerical constant. Then there will be a sing
dimensionless combination ofx, t, andb, which we can take
as

z5x/btd. ~19!

In this caseZ5Z(z), V5V(z), and the motion is self-
similar, z being the similarity variable. For self-similar flow
the phase variablesZ and V satisfy the following ordinary
differential equations:

sS s
V

ZD 1/l

1
1

l2
S l11

z

Z

dZ

dz D50, ~20!

l2z
dV

dz
512@l2~n11!1l1#V2~V2d!

z

Z

dZ

dz
. ~21!

Later on we shall indicate how to obtain from Eqs.~20!
and ~21! a general formalism that allows us to derive~in a
systematic way! the entire family of solutions correspondin
to the similarity variablez. In the rest of the present sectio
we shall discuss some special solutions of particular inter

A. Creeping gravity currents whose volume varies with time
according to a power law

These flows obey the global continuity equation

E
0

xf (t)

~2px!nh~x,t !dx5qata, ~22!

where qa5const andxf denotes the position of the fron
Clearly a50 corresponds to a volume conserving curre
a51 to a source of constant flux atx50, etc. For Newton-
ian liquids, these flows have been studied already@7#.

Using Eqs.~9! and ~14! in Eq. ~22! one finds

d5
11l2a

l2~n11!1l1
~23!

and

b5S qa

al
D b

, b5
l2

l2~n11!1l1
, ~24!

z f5F ~2p!nE
0

1

h1/b21Z1/l2dhG2b

, ~25!

with

h5z/z f . ~26!

From these results we can determine the spreading r
tions for these currents: the equation of motion of the fron
given by

xf~ t !5z fbtd, ~27!
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and for fixedh5x/xf the thickness of the current varies a

h}tg, g5d@al12~n11!# ~28!

and the average flow velocity as

v}td21. ~29!

To determine the profile of the current and the dep
dence of the average flow velocity onh, it is of course
necessary to solve Eqs.~20! and ~21!. Barring a few special
cases, it is not possible to obtain close form solutions. Fo
very important case, i.e., that of a volume conserving curr
(a50, implying the spreading of a constant volume of li
uid!, Eqs.~20! and ~21! admit a special close form solutio
given by (s51)
o

n
(

g
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r

pe
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,
ts
-

a
nt

Z5dFl2

l1
~h2l1 /l21!Gl

, V5d, ~30!

with d5@l2(n11)1l1#21, b5l2d, from which one de-
rives

h5@al
n11q0

l1 /l2#bFdz f
l1S l2

l1
D lG1/l2

t2d(n11)~12hl1 /l!l/l2,

~31!

v5d
x

t
, ~32!

with
z f5H ~2p!nFdS l2

l1
D lG1/l2

GS 11
l

l2
DGS 11l~21n!

l1
D

~11n!GS 11
l

l2
1

l~11n!

l1
D J

2b

. ~33!
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It can be verified that forl51 these solutions reduce t
those previously known~see, for instance,@7#!. The self-
similarity exponentd depends weakly on the rheology. I
Fig. 1 we show the profiles of constant-volume currentsa
50) for different values ofl in the casen50.

B. Waiting-time solutions

The governing equations admit what are called ‘‘waitin
time solutions.’’ These solutions represent flows whose fr
does not move during a finite interval of time, although the
is liquid movement behind the front. Solutions of this ty
appear in problems of nonlinear diffusion, nonlinear h
conduction, and other related problems~see, for example
@20,21#!. Waiting-time Newtonian creeping gravity curren
have been studied theoretically@8,10# and experimentally
@13,4,5#. They are related to a singular solutions of Eqs.~20!

FIG. 1. Profiles of constant-volume currents for differentl.
-
t

e

t

and ~21! of the form Z5const, V5const. It can be easily
verified that, in the present case of non-Newtonian rheolo
one also finds solutions of this kind.

There is, in effect, a single constant solution of the syst
~20! and ~21!, given by

V5V05
1

l2~n11!1l1
, ~34a!

Z5Z052V0S l2

l1
D l

, ~34b!

for s521. The corresponding flow is given by

h5alS xl1Z0

t D 1/l2

, v5V0

x

t
, t,0. ~35!

This solution is only valid for negativet, and blows up att
50. It represents a current whose front is stationary fo
finite time. In the analogous case of the usual nonlinear
fusion equation, it has been shown@22,23,10# how to con-
struct solutions of this type that can be extended to posi
time ~when the front starts to move!. Equation~34! is not the
only waiting-time current that can occur for non-Newtoni
liquids; the discussion of initial conditions leading to th
waiting-time behavior will be given below.

IV. STEADY FLOWS

It is easy to verify that the governing equations~13! admit
a time-independent solution. It yields a current given by

h5h0~12h (l2n)/l!l/(2l12), ~36!

v5~h0 /al!l2x0
21h2n~12h (l2n)/l!2l/(2l12), ~37!
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nÞ1, h5x/x0 , x05const, h05const, ~38!

which represents the flow over a horizontal surface of fin
extent, having an edge atx5x0. The liquid flows from a
constant source atx50 to the edge, and spills over it. It ca
be verified that

q5~2px!nvh5~2p!nx0
n2lh0

2l12al
2l25const. ~39!

These solutions are analogous to those correspondin
the Newtonian case@8#; in this reference the connection b
tween the steady-state solutions and the self-similar one
discussed. In the casen51, l51 ~Newtonian!, Eqs. ~36!
and~37! are not valid andw, v depend logarithmically onx.

V. TRAVELING-WAVE SOLUTIONS

For the special case of Cartesian geometry (n50) one
can find traveling-wave solutions of Eq.~13!. Let

w5w~j!, j5ct2x, c5const. ~40!

In the present case, of course,c does not depend on th
properties of the fluid, but is a parameter determined by
boundary conditions, for instance a piston moving at a c
stant speed that pushes the liquid. As a consequence, it
assume any value. Using Eq.~40!, Eq. ~21! can be integrated
obtaining

j2j05sE F swl12

c~w2K !G
1/l

dw, ~41!

whereK andj0 are arbitrary constants. Thus the problem h
been reduced to a quadrature. As a special case, considK
50. Let us further assumec.0; thens51. Evaluating Eq.
~41!, one obtains

w5Fl2

l
c1/l~j2j0!Gl/l2

. ~42!

This solution is the generalization for non-Newtonian li
uids of the traveling-wave solution~see@8#! already known
for Newtonian flows. It represents a current that advan
with constant speedc on an infinite horizontal supporting
plate; its front is located atx5ct2j0.

If one assumesc,0 ~which requiress521), a wave
traveling in the opposite sense is obtained; we omit det
for brevity.

These currents describe the flow produced by a plane
ton, or by a spatula, that advances steadily, pushing a
stant volume of liquid in front of it. Actually, the presen
approximation ceases to be valid immediately in front of
piston, so that our formula is a good description of the pro
of the current as long as one considers only the flow far fr
the piston.

VI. OUTLINE OF A PHASE PLANE FORMALISM

The entire family of self-similar solutions of the type~13!
and ~17! can be systematically investigated by means o
phase plane formalism developed in analogy to that of
dynamics~see@27,28#!. In this paper, we closely follow the
e

to
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e
-
ay
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s
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is-
n-

e
e
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treatment given in@8#. Starting from the coupled equation
~20! and ~21!, it is possible to eliminatez to obtain an au-
tonomous first-order ordinary differential equation forV(Z):

dV

dZ
5

N~V,Z!

D~V,Z!
, ~43!

where

N~V,Z!5~d2V!@l2s~sV/Z!1/l1l1#

1@l2~n21!1l1#V21 ~44!

and

D~V,Z!5l2Z@l2s~sV/Z!1/l1l1#. ~45!

Once Eq.~43! has been solved, andV(Z) is known,z(Z)
can be obtained from

d~ ln z!

dZ
52

l2

D~V,Z!
, ~46!

by means of a simple quadrature.
Thus the essential step in the solution of a self-sim

problem is the integration~numerical, in general! of Eq. ~43!.
The Z-V plane is usually called the ‘‘phase plane’’; a sol
tion of Eq.~43! is represented by a curve in the phase pla
which is called an integral curve. A single integral cur
passes through any regular point of the phase plane.
integral curve represents a self-similar current of a cert
sort. A self-similar solution characterized by specific boun
ary conditions is represented by one or more pieces of
appropriate integral curves. As an example, the integ
curve corresponding to the self-similar current that descri
the spread of a constant volume of liquid is given by t
straight lineV5d ~see Sec. III A!.

To determine which integral curve corresponds to
given problem, it is necessary to investigate the behavio
V(Z) in the neighborhood of the singular points of Eq.~43!.
The whole (Z,V) plane needs to be considered, and acco
ing to Eq. ~14!, solutions withZ.0 correspond tot.0,
while solutions in the half-planeZ,0 are meaningful only
for t,0. It can also be observed thats51 in the first (Z
.0,V.0) and third (Z,0,V,0) quadrants, ands521 in
the second (Z,0,V.0) and fourth (Z.0,V,0). The sin-
gular points themselves also represent solutions: the wait
time solution, described in Sec. III B, is an example. T
detailed investigation of the entire family of self-simila
flows is left for future work.

VII. ADVANCING FRONTS AND WAITING-TIME
BEHAVIOR

An important singular point of Eq.~43! is A (VA
5d,ZA50). Two integral curves pass throughA, which is a
saddle. OneZ50 is uninteresting; the other is given approx
mately by

V>d1sl
@l2~n11!1l1#d21

l2~3l11! S sZ

d D 1/l

~47!
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in the neighborhood ofA. The pointA represents the ad
vancing front of a current. Using Eq.~47!, we integrate Eq.
~46! and find

Z>dFl2

l
~12h!Gl

~48!

and

h5F2l1/2~l12!dS l2

l D l A

rgG1/l2S xf

t
XlD 1/l2

, ~49!

v5d
xf

t
h, ~50!

with X5ux2xf u. One thus finds that an advancing front h
a characteristic profile of the form

h}Xl/l2. ~51!

It is interesting to find that the shape of an advanc
front depends only on the rheological indexl, and not on
any other parameter of the problem.

It can be easily shown from Eq.~13! that any front that
advances with a finite, nonvanishing speed~and not only
those of the self-similar currents! must have the unique shap
~51!. This fact is related to the existence of waiting-tim
solutions~see@23#, also@13# for a discussion of this problem
in the context of Newtonian liquids!: it can be shown that if
the initial profile of the current near a front is of the form

h~ t50!}Xs, s5const, ~52!

several possibilities arise~of course, in general, the motio
will not be self-similar at the beginning!: ~i! if 0 ,s
,l1 /l2, the front begins to move at once with~a! infinite
velocity if 0,s,l/l2, ~b! finite velocity if s5l/l2, or
zero velocity ifl/l2,s,l1 /l2; ~ii ! if s5l1 /l2, the front
begins to move after a finite waiting timetw , ~iii ! if s
.l1 /l2, the front also begins to move after a finite waitin
time tw , but before that a discontinuity of the slope of th
profile develops behind the front~a corner shock!. This cor-
ner shock~more precisely, corner layer! advances towards
the front, which does not move until it is overtaken by t
corner shock att5tw . The experiments and the numeric
solutions of the governing equations support these con
sions for the Newtonian case@5,10#.

VIII. BOLTZMANN TRANSFORM FORMALISM

An alternative way of deriving solutions of the governin
equation~10! is based on seeking solutions of the form

w5tm f ~q!, q5x/td. ~53!

Substituting Eq.~53! into Eq.~10!, one finds that the con
dition

dl15ml211 ~54!

must be satisfied for Eq.~53! to be a solution. The resulting
ordinary differential equation takes the form
g

u-

qn~m f 2dq f 8!1s@qnf l12~2s f 8!l#850, ~55!

where the prime denotes the derivative with respect toq. If
we choose

m52d~n11!, ~56!

Eq. ~54! can be integrated once to give

sqnf l12~2s f 8!l5dqn11f 1const, ~57!

along with an expression ford in terms of the parameters o
the system,

d5@l2~n11!1l1#21. ~58!

For const50, Eq. ~57! can be readily integrated to yield

f 5FL2s~sd!1/l
l2

l1
q (l11)/lGl/l2

, ~59!

whereL is a constant of integration.
Remembering the fact that our original system is invari

under time translation~and also under space translation f
the n50 case!, we realize that

w5t2d(n11)FL2s~sd!1/l
l2

l1
S x

tdD (l11)/lG l/l2

, ~60!

wheret5t1D ~andD denotes some arbitrary time! is also a
solution. Equation~60! can be viewed as giving the tim
evolution of the system starting from a well-defined initi
condition att50,

w05D2d(n11)FL2s~sd!1/l
l2

l1
S x

DdD l1 /lG l/l2

. ~61!

The constant of integrationL could be determined by
imposing a boundary condition. Without any loss of gen
ality, we assume that atx51, w050 giving

L5s~sd!1/l
l2

l1
D2dl1 /l, ~62!

which leads to

w5t2d(n11)Fsl11dS l2

l1
D lGl/l2FD2dl1 /l2S x

tdD l1 /lG l/l2

.

~63!

It can be easily verified that Eq.~63!, with s51, is equiva-
lent to the solution~31! and ~32! ~obtained in Sec. III A!
corresponding to the spread of a constant volume of liqu

It is of interest that the solution displayed in Eq.~60! can
be transformed into the waiting-time solution already d
cussed in Sec. III B. Fort→0 ~or t→2D), L can be easily
neglected in Eq.~60! yielding

w~t→0!5F2S l2

l1
D dxl1

t G1/l2

, ~64!
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which is precisely the solution given by Eq.~35!. Notice that
in this derivation the solution is valid for either positive (D
52uDu) or negative t, but it blows up at t50 (t5
6uDu). Of course, the waiting-time solution~35! can be seen
as the special solution with the constant of integrationL
50.

IX. DISCUSSION AND FINAL REMARKS

Based on a generalization of the lubrication approxim
tion @11#, we have derived the governing equations that
scribe creeping gravity currents of non-Newtonian liqu
having a power-law rheology. Currents that depend o
single horizontal coordinate have been considered, bot
Cartesian and in axial symmetry. The equations are of a n
linear parabolic type, and differ from those for Newtoni
liquids in that they are nonlinear in the spatial derivative
the thickness of the current. However, many properties of
solutions are closely analogous to those for Newtonian r
ology @7,8#. In particular, the spreading relations for the cu
rents can also be expressed as power laws in time. The
ponents, however, are functions of the rheological index,
thus differ from those corresponding to Newtonian liquid
The similarity solutions corresponding to currents who
volume varies as a power of time have been investigated.
the spread of a constant volume of liquid, analytic solutio
are obtained both for the Cartesian and for the axial sym
try. Solutions of the waiting-time type are found, as well
steady flows from a constant source to a sink at a fixed
sition. General traveling-wave solutions have also been
tained in closed form, and analytic formulas for a simp
case are given. A general phase plane formalism, which
lows us to systematically investigate the entire family of s
similar solutions, is introduced. The application of the Bo
zmann transform for solving the governing equations
briefly discussed.

There is a good agreement between the present theory
some experiments@4,14#. This can be appreciated in Figs.
and 3, which are based on measurements@4,14# of constant-
volume waiting-time currents with plane symmetry (n50).
A silicone putty ~Rodhorsil Gomme spe´ciale GSIR, manu-
factured by Rhoˆne-Poulenc, France! loaded with sand was
used. The rheological behavior of this putty was investiga

FIG. 2. Self-similar motion of the front of a waiting-time curre
for t.tw ~from Ref. @4#!.
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in @29# by means of a rotational viscometer; these measu
ments show a Newtonian behavior for large strain ra
(1022 s21 or larger!, while for very small strain rates
(1025 s21 or less! the behavior can be approximated by E
~1! with l.1.6. The experiments of@4,14# were performed
during our research on waiting-time currents~see@5#! but the
use of the silicone putty was discontinued when we reali
that its behavior was not Newtonian, and the results were
included in the cited reference. These measurements co
spond to strain rates in the range between 1024 and
1023 s21, and the results of@29# suggest that in this inter
mediate range a power-law rheology as Eq.~1! can be used,
with l around 1.2–1.3@see Fig.~9! of @29##.

We shall briefly describe the experiments of@4,14#; the
fluid was contained in a rectangular perspex tray and
initial condition consisted of a wedge-shaped profileh
}X), which according to the discussion of Sec. VII yields
waiting-time flow. The position of the front as well as th
thickness profile of the current were measured. To this p
pose the authors employed a sheet of laser light obtaine
means of a slit and a cylindrical lens, to produce a w
defined, narrow line on the surface of the current, who
image was recorded and analyzed. This experimental s
allowed us to measure the profile within an error of 0.3 m
As expected, after the fluid was released, a time intervatw
ensued during which the profile of the current changed
the front remained motionless. Att5tw , the front started to
move. In Fig. 2 it can be observed that fort.tw , the motion
of the front follows very closely Eq.~27!, with d50.182,
which corresponds to a rheological indexl51.164. In Fig. 3
we show the profiles of the current for two different m
ments, within the self-similar regime, as well as the theor
ical profiles @Eq. ~31!# corresponding tol51, l51.164,
andl51.276~the latter is the value that gives the best fit
the experimental points and would result ind50.171); how-
ever, the difference between these values is not significan
view of the experimental uncertainties. In conclusion,
believe that there is a reasonable consistency between
theoretical profile corresponding to the rheological index

FIG. 3. Theoretical~this work! and experimental@14# profiles of
self-similar constant-volume currents. Triangles and circles rep
sent measurements at two different times, both in the self-sim
regime. The theoretical profiles correspond tol51 ~Newtonian
liquid!, l51.164~which is the rheological index that gives the be
fit of the motion of the front, see Fig. 2!, andl51.276@which gives
the best fit of the profile of the current, Eq.~31!#.
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rived from the dynamics~Fig. 2! of the current and the mea
sured profile, and both are consistent with the independ
determination ofl of Ref. @29#, which lends support to the
theory presented here. It can also be observed that in
experiments considered here, the difference between
Newtonian and the non-Newtonian profiles is small (l is
close to unity!, but significant.

The analogy between the present results and those de
for Newtonian liquids~all of our solutions have their coun
terparts in Newtonian rheology! can be traced to the fact tha
the constitutive relation~1! introduces a single-dimensiona
parameter~A! into the problem, as happens in the case o
Newtonian liquid ~the viscosity coefficient!. In both in-
stances, this dimensional parameter can be scaled out b
appropriate definition of the dependent variable, and t
does not appear in the final governing equations. For
reason one finds similarity solutions whenever the analog
ia

J

J
ri-
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oc

e
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nt
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he

ed
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us

Newtonian problem is self-similar. The dimensionality ofA
depends on the rheological indexl and, as a consequenc
the spreading relations have rheology-dependent expon
It is interesting to observe that in most cases this depende
is rather weak, a fact that was already pointed out in a p
ticular instance@16#. However, the differences betwee
Newtonian and non-Newtonian currents are significant a
can be clearly observed in the experiments, notwithstand
that these experiments were not specifically designed to
the theory.
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