PHYSICAL REVIEW E VOLUME 60, NUMBER 6 DECEMBER 1999

Theory of creeping gravity currents of a non-Newtonian liquid
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Recently several experiments on creeping gravity currents have been performed, using highly viscous sili-
cone oils and putties. The interpretation of the experiments relies on the available theoretical results that were
obtained by means of the lubrication approximation with the assumption of a Newtonian rheology. Since very
viscous fluids are usually non-Newtonian, an extension of the theory to include non-Newtonian effects is
needed. We derive the governing equations for unidirectional and axisymmetric creeping gravity currents of a
non-Newtonian liquid with a power-law rheology, generalizing the usual lubrication approximation. The equa-
tions differ from those for Newtonian liquids, being nonlinear in the spatial derivative of the thickness of the
current. Similarity solutions for currents whose volume varies as a power of time are obtained. For the spread
of a constant volume of liquid, analytic solutions are found that are in good agreement with experiment. We
also derive solutions of the waiting-time type, as well as those describing steady flows from a constant source
to a sink. General traveling-wave solutions are given, and analytic formulas for a simple case are derived. A
phase plane formalism that allows the systematic derivation of self-similar solutions is introduced. The appli-
cation of the Boltzmann transform is briefly discussed. All the self-similar solutions obtained here have their
counterparts in Newtonian flows, as should be expected because the power-law rheology involves a single-
dimensional parameter as the Newtonian constitutive relation. Thus one finds similarity solutions whenever the
analogous Newtonian problem is self-similar, but now the spreading relations are rheology-dependent. In most
cases this dependence is weak but leads to significant differences easily detected in experiments. The present
results may also be of interest for geophysics since the lithosphere deforms according to an average power-law
rheology.[S1063-651X99)09011-X]

PACS numbd(s): 47.50+d

[. INTRODUCTION terms of creeping gravity currents. Scaling laws that describe
the time evolution of mountain belts were deriVidd] con-
Gravity currents are ubiquitous phenomena that occur irsidering the combined effect of crustal shortening, isostasy,
many situations of scientific and engineering intefdsg].  and creeping gravity flow at the root of the belt. Then the
Various regimes are possible, according to the relative magextension of the theory that we presently develop is of con-
nitude of the forces acting on a typical fluid element. OfSiderable practical interest. _ _
considerable practical interest is the viscosity dominated re- One of the simplest non-Newtonian models is based on
gime called creeping flow. In this regime the motion is the so-called power-law constitutive relation of the form
nearly horizontal and very slow, so that inertia effects ard17.18
negligible and the flow is governed by a balance between
gravity and the viscous forces. The flows of thin layers of TijZAE(l_)‘)/)‘éij , )
highly viscous fluids on a horizontal surface, as well as cer-
beriments on oresping graviy currents have bean performad WHich 7 is the deviatoric stress tensa; =(av; /3%
(see, for exampld;3—6]). The theory of these flowZ—10] ovjl9x;)I2 s the strain rate, and
has been based on the lubrication theory approximdfidh .
with the assumption that the fluid is Newtonian. It is not E= (i)™ 2
trivial what changes will result in the theory if the fluid is
non-Newtonian, as is the case of many highly viscous liquidss the second invariant of the strain rate tens@rgnhd the
of practical interest. We notice that the silicone oils used inrheological indexn are constanjs The formula(l) is some-
the above-mentioned experiments as well as the silicone putimes known as Ostwald’s or Norton’s constitutive relation.
ties used in the analogic modeling of gravity flows of the A power-law rheology such as Ef) is usually accepted as
earths crust(see [12]) have a non-Newtonian behavior a good description of the vertically averaged mechanical
[13,14,4. Also, a non-Newtonian constitutive relation is re- properties of the lithospheric rocksee, for examplg,19]),
quired to describe the rheology of the lithosphésee, for and is adequate to describe the behavior of many non-
example[15]). We notice that the deformations of the litho- Newtonian liquids within appropriate ranges of the strain
sphere associated with orogeny can also be described nate, like those of the above-mentioned experiments.
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In this paper we develop a theory of the creeping gravitydence through the boundary condition at the free surface
currents of a liquid that obeys the power-law constitutive=h(x,t), whereh(x,t) denotes the thickness of the current.

relation (1). We use an approximatiofanalogous to the lu- Integrating Eq.(4) with the condition that az=h, p
brication approximation for Newtonian liquidg€o derive =0, we obtain

equations for a current flowing on a rigid horizontal surface,

and show that the thickness of the current satisfies a nonlin- p=pg(h—2), ()

ear parabolic differential equation that is a generalization of . . .
the nonlinear diffusion equation usually called the porous\"{hICh gives th? required slowdependence to the left-hand
media equation in the mathematical literature. Next we derc'Ide of Eq.(3), i.e.,
rive some similarity solutions that describe the flows corre- ap oh
sponding to various initial and boundary conditions; these —=pg—. (6)
include (i) the spread of a constant volume of the liquid) X X

the currents produced by sources located at the or{gin,

the steady flow from a source to a sink, dng solutions of the boundary conditioné) no slip at the bottonz=0 and

the waiting-time typeglanalogous to those arising in nonlin- .. ; .
ear diffusion; see, for examplg20,21], also[22,23 for the- Eg)) Fooﬁtﬁggentlal stress at=h, we can readily integrate Eg.

oretical details, andi4,5] for experiments In Cartesian ge-

Within the context of the preceding discussion, and with

ometry, the system also allows propagating wave solutions. N+2 z\ M1
Finally we set up a phase plane formalism that allows us to V=gV 1T ( 1- H) : (7)
investigate systematically the entire family of self-similar so-
lutions of the governing equations. We also discuss the Boltyhere
zmann transform method of solution. A detailed investiga-
tion of the solutions corresponding to the integral curves in h - pg\*hr*l h\*
the ph i v=(v >=—j v, dz=21" M2 gl —= -o—
phase plane is left for future work. "y X Al N+2 IX
()

II. THE “LUBRICATION APPROXIMATION” FOR A

NON-NEWTONIAN LIQUID is the vertically averaged speed. From K&§). it is obvious

that the sign ofv, as expected, is always opposite to that of
The governing equations of the creeping gravity flow of adh/dx. The explicit appearance af is a necessary conse-

power-law liquid on a rigid horizontal surface are obtainedquence of the non-Newtonian rheology.

starting from the following assumptionsi) the motion is Equation (8) represents the essence of the momentum

essentially horizontalso that the vertical component of the transfer equation for this paper. We now take the vertically

velocity is negligibly smal)l, (ii) inertia effects are negli- averaged continuity equation

gible, and(iii) the length of the current is much larger than

its depth. These assumptions imply a purely hydrostatic pres- @ v hy)= ﬁ 4y h)=0 9)

sure. In this paper we shall consider only planar and axisym- ot TV (el = Zr V- (evh) =

metric flows, i.e., flows that depend on a single horizontal o ) ) .

coordinate(Cartesian for planar symmetry, radial for axial @hd combine it with Eq(8) to give a single equation:

symmetry. The horizontal coordinate s the vertical coor- W 9

dinate isz, andt denotes the time. The acceleration of gravity  tox "—

is g and the constitutive relatiofl) is assumed. at X
With these assumptions, it can be easily shown thakthe . . . .,

and z components o? the momentum eql}/ation can be ap\_/vhere we have defined the “reduced thickness

aw\
x“w“z(—og> }=O, (10

proximated as Wzailh, (11)
ap 9 [ dlvy\ ™ with
— =202 gp — =0, o=sgnv,) (3
IX Jz\ dz v @ (21 +1)
a,= 2(17)\)/2)\()\4_2)1/)\_ , (12)
and rY
in order to absorb the parameteks p, andg. Notice also
(7_p _ that the indexn=0 (n=1) signifies Cartesiafaxial) sym-
oz TP9=0 @ metr
y.

Equation(10), or equivalently the set of equatiof® and

In Egs. (3) and (4), p is the density,p the pressure, and (9), rewritten in terms ofw, i.e.,

v,(X,z,t) is the horizontal component of the velocity. Notice PR

thqt gtrlctly §peak|ngf=sgn(avxl_a;), but in our system it V_O.W)\+1( _U_) =0, (133
coincides witho=sgn{v,). In deriving Eqs.(3) and( 4) we X

have assumed that the strongest variatiow,ofs in z, and

have neglected thevariation ofv, (which is crucial for the aw J (13b)

. . . . — 4 -n___ n —
continuity equatioh In fact we shall sneak in the depen- ot X ax(x wv)=0,
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are the governing equations for creeping gravity flows in this Let us now assume that the problem involves only one
generalized lubrication approximation, as they reduce to thparameterb, with independent dimensions. Clearly, it can be

usual formulas for a Newtonian fluid. assumed without loss of generality that
Equation(10) is a nonlinear parabolic equation of diffu- s
sive type that is different from the usual equations of nonlin- [b]=LT"°, (18)

ear diffusion(see, for exampld24]). It can be observed that
the assumption of non-Newtonian rheology# 1) intro-
duces a nonlinearity in the spatial derivativewfthat was
not present in the Newtonian case, so that our generalizatio"fllS

is not at all trivial. However, we shall show in the following {=x/bt?. (19)
sections that many solutions of EGLO) are closely analo-

gous to solutions pertaining to Newtonian liquids. It will be | this casez=Z7(¢), V=V(¢), and the motion is self-
also shown that in many instances the currents are characteimilar, ¢ being the similarity variable. For self-similar flows

ized by a sharp, well defined front, the current extends up tghe phase variableZ and V satisfy the following ordinary
a certain value=Xx;, and ax— X the thicknes$ vanishes, differential equations:

there being no fluid ahead of the front. In this connection, it

whereé is a numerical constant. Then there will be a single
dimensionless combination @&f t, andb, which we can take

will be seen that the present lubrication approximation pre- (VAR | { dz

dicts profiles of the formhoXs, with X=|x—x;| and 0<s S )\_2()\1+ zaz) =Y (20)
<1. Naturally these vertical profiles are incorrect near the

front, where the approximation breaks down. The same prob- dv l

lem arises in the context of Newtonian liquids and in this Nol——=1=[Np(n+ 1)+ N ]V=(V=9) (21

case it has been showsee the lengthy discussions[af,8]) Z d¢
that the model describes correctly the general shape and dy- | ater on we shall indicate how to obtain from EG80)
namics of the currents, regardless of the fact that the verticg|nq (21) a general formalism that allows us to deriiie a
fronts are surely not realistic. We see no reason why theysiematic waythe entire family of solutions corresponding
situation should be different in the present case. Actuallyg the similarity variabler. In the rest of the present section,

various experiments with Newtoniai25,26,3,9 and non- \ye shall discuss some special solutions of particular interest.
Newtonian liquidg4,14,6 show that the lubrication approxi-

mation describes surprisingly well the motion of the front
and the profiles of the currents, even quite close to the front.
Accordingly, we shall accept solutions with sharp fronts,
subject to the qualification that there exists a certain small These flows obey the global continuity equation
region near the front where their profiles differ markedly

from the true solutions. JXf(t)(zwx)“h(x,t)dx=qat“, (22
0

A. Creeping gravity currents whose volume varies with time
according to a power law

Il. SIMILARITY SOLUTIONS "
where q,=const andx; denotes the position of the front.

By making a judicious choice fow, we are left with no  Clearly «=0 corresponds to a volume conserving current,
parameters in the governing equations. The variablesd «=1 to a source of constant flux at=0, etc. For Newton-
v, in fact, have dimensions that can be completely specifiethn liquids, these flows have been studied alrelaty
in terms of length L] and time[ T]. We can take advantage Using Egs.(9) and(14) in Eqg. (22) one finds
of this fact and express andv in terms of two dimension-
less phase variablesandV, 1+Noa

o= ——7—— (23
Ao(n+1)+\
w= (AT 1Z) MDYy Ty, (14) 2 1
N and
which, in general, depend o t, and the parameters of the
problem that enter into its specific initial and boundary con- du\? Ao
ditions. Substituting Eq(14) into Eq. (13), one finds b= a B= T, (24)
(VAR | X 9Z\ 1 -
g O'Z + )\—2 )\1+ z&_X =0 (15) gf: (Zw)nfo nl/ﬁ—lzl/)\zdﬂ (25)
and with
t 9z X dZ oV —
G v ZZ o x2t n={1Ls. (26)
7 1-[Ao(n+1)+ NV VZ o NoX o
(16) From these results we can determine the spreading rela-
tions for these currents: the equation of motion of the front is
with the definitions given by

AN=A+1, Ap=2\+1. (17 X¢(t)=bto, (27
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and for fixedn=x/x; the thickness of the current varies as Ao A
Z=08—(p MN-1)| , V=5, (30)
hot?,  y=dlak;—(n+1)] (28) A
and the average flow velocity as with 8=[A,(n+1)+X;]" 1, B=\,8, from which one de-
rives
vt L (29)

To determine the profile of the current and the depen-h= [a”+l M“Z]B
dence of the average flow velocity om, it is of course

NI
5§M<)‘2) } zt—a(n+1)(1_n>\1/x)>\/>\2,
A

necessary to solve EqR0) and(21). Barring a few special (3D
cases, it is not possible to obtain close form solutions. For a

very important case, i.e., that of a volume conserving current Ve 5§ (32
(a=0, implying the spreading of a constant volume of lig- t’

uid), Egs.(20) and (21) admit a special close form solution
given by (c=1) with

A 1+X(2+n) —B
Ao\ M2 F(1+>\_2) A
amy e HE) } SRS 39
(1+nmlii1+ —+—7—
A2 A

It can be verified that foh =1 these solutions reduce to and (21) of the form Z=const, V=const. It can be easily
those previously knowrisee, for instance|,7]). The self-  verified that, in the present case of non-Newtonian rheology,
similarity exponentd depends weakly on the rheology. In one also finds solutions of this kind.

Fig. 1 we show the profiles of constant-volume currerts ( There is, in effect, a single constant solution of the system

=0) for different values of in the casen=0. (20) and(22), given by
N : 1
B. Waiting-time solutions V—Vo—m, (34a
The governing equations admit what are called “waiting-

time solutions.” These solutions represent flows whose front Ao\ N
does not move during a finite interval of time, although there Z=2Zo==Vo| 1| (34b)
is liquid movement behind the front. Solutions of this type !
appear in problems of nonlinear diffusion, nonlinear heafor o= —1. The corresponding flow is given by
conduction, and other related problertsee, for example,
[20,21)). Waiting-time Newtonian creeping gravity currents xMZ, Unz X
have been studied theoreticall$,10] and experimentally h=a, i , V=Vof, t<0. (35

[13,4,5. They are related to a singular solutions of E@€)

This solution is only valid for negative and blows up at
hid[a lqa(/lﬂ)/mﬂ)]—ﬂ =0. It represents a current whose front is stationary for a
finite time. In the analogous case of the usual nonlinear dif-
fusion equation, it has been shoy2?,23,1Q how to con-
struct solutions of this type that can be extended to positive
time (when the front starts to moyeEquation(34) is not the
only waiting-time current that can occur for non-Newtonian
liquids; the discussion of initial conditions leading to the
waiting-time behavior will be given below.

IV. STEADY FLOWS

It is easy to verify that the governing equatiqd8) admit
a time-independent solution. It yields a current given by

h:ho(l— n(x—n)/x)x/(zxu), (36)

_ -1_- —n)/Ay— N (20 +2
FIG. 1. Profiles of constant-volume currents for differ&nt V—(ho/a)\)xzxo 7 n(1—77()‘ M) MEN+2) - (37)
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n#1, 7n=x/Xg, Xo=const, hy=const, (38) treatment given if8]. Starting from the coupled equations
(20) and (21), it is possible to eliminatg to obtain an au-
which represents the flow over a horizontal surface of finiteconomous first-order ordinary differential equation ¥6(Z):
extent, having an edge at=x,. The liquid flows from a
constant source at=0 to the edge, and spills over it. It can dv N(V,2)
be verified that 4z DV.Z)’ (43

q=(2mx)"vh=(2m)"x§ *h3"*%a *2=const. (39)  where

These solutions are analogous to those corresponding to N(V,Z)=(8—V)[ Ao (aVIZ) ™+ ]
the Newtonian casp8]; in this reference the connection be-
tween the steady-state solutions and the self-similar ones is +[A2(n=1)+N V-1 (44)

discussed. In the cage=1, \=1 (Newtonian, Egs. (36)
and(37) are not valid andv, v depend logarithmically ow. ~ and

_ /
V. TRAVELING-WAVE SOLUTIONS D(V,Z) =\pZ[Np0(aVIZ) M +\4]. (45
For the special case of Cartesian geometny=0) one Once Eq.(43) has been solved, and(Z) is known, {(Z)
can find traveling-wave solutions of EQL3). Let can be obtained from
w=w(§), &=ct—Xx, c=const. (40 d(In¢) Ao
= (46)

In the present case, of course,does not depend on the dz D(V.2)

properties of the fluid, but is a parameter determined by th%
boundary conditions, for instance a piston moving at a con-
stant speed that pushes the liquid. As a consequence, it ma
assume any value. Using Ed0), Eq.(21) can be integrated

y means of a simple quadrature.

Thus the essential step in the solution of a self-similar
oblem is the integratiothumerical, in generabf Eq. (43).
The Z-V plane is usually called the “phase plane”; a solu-

obtaining tion of Eq.(43) is represented by a curve in the phase plane,
wht2 I which is called an integral curve. A single integral curve
§—§0=0'j m dw, (41) passes through any regular point of the phase plane. Any

integral curve represents a self-similar current of a certain
Sort. A self-similar solution characterized by specific bound-

ary conditions is represented by one or more pieces of the
appropriate integral curves. As an example, the integral
curve corresponding to the self-similar current that describes
the spread of a constant volume of liquid is given by the

MAp straight lineV= 6 (see Sec. Il A.

(42 To determine which integral curve corresponds to the
given problem, it is necessary to investigate the behavior of

This solution is the generalization for non-Newtonian lig- V(2) in the neighborhood of the singular_ points of £43).
uids of the traveling-wave solutiofsee[8]) already known 1€ whole €,V) plane needs to be considered, and accord-
for Newtonian flows. It represents a current that advancefd t© EQ. (14), solutions withZ>0 correspond ta>0,

with constant speed on an infinite horizontal supporting While solutions in the half-plan&<0 are meaningful only
plate; its front is located at=—ct— &. for t<0. It can also be observed that=1 in the first £

If one assumes<0 (which requireso=—1), a wave - 0V>0) and third <0V<0) quadrants, and=—1 in
traveling in the opposite sense is obtained; we omit detail{® seécond2<0,V>0) and fourth £>0V<0). The sin-
for brevity. gular pom@s themselyes a_Iso represent solutlons: the waiting-

These currents describe the flow produced by a plane pi§'—me_50|“_t'°n’ described in Sec. Il B, is an example. The
ton, or by a spatula, that advances steadily, pushing a COIqi_etalle_d investigation of the entire family of self-similar
stant volume of liquid in front of it. Actually, the present fOWS is left for future work.
approximation ceases to be valid immediately in front of the
piston, so that our formula is a good description of the profile  VII. ADVANCING FRONTS AND WAITING-TIME
of the current as long as one considers only the flow far from BEHAVIOR
the piston.

whereK and¢, are arbitrary constants. Thus the problem ha
been reduced to a quadrature. As a special case, consider
=0. Let us further assume>0; theno=1. Evaluating Eq.
(41), one obtains

A
w=|Zet (¢ o)

An important singular point of Eq(43) is A (V4
=8,Z,=0). Two integral curves pass through which is a
saddle. On& =0 is uninteresting; the other is given approxi-

The entire family of self-similar solutions of the type3) ~ Mately by
and (17) can be systematically investigated by means of a
phase plane formalism developed in analogy to that of gas [7\2(”+1)+)\1]5_1(‘TZ

1/
dynamics(see[27,28). In this paper, we closely follow the V=ot ok No(3N+1) 7) “7

VI. OUTLINE OF A PHASE PLANE FORMALISM
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in the neighborhood of4. The point. A represents the ad- I uf— 89F")+ o[ SN 2(—af )N =0, (55)
vancing front of a current. Using E¢47), we integrate Eq.
(46) and find where the prime denotes the derivative with respeat tdf
we choose
e 49 p=—8(n+1), (56
and Eqg. (54) can be integrated once to give
Ao\ M A2 x|\ T2 oI T2(— of ) = 59" f + const, (57)
h=|2"2(\+2)6 ~| g TxA , (49
P9 along with an expression faf in terms of the parameters of
X the system,
Vv=406—n, 50
t” (50 S=[Ap(n+1)+N ] L (58

with X=[x—x¢|. One thus finds that an advancing front has  For const0, Eq.(57) can be readily integrated to yield
a characteristic profile of the form
My

hoe XMz, (51) f= (59

A— 0.(0.5)1/)\%19()\+1)/)\
1

It is interesting to find that the shape of an advancingwhereA
front depends only on the rheological index and not on
any other parameter of the problem.

It can be easily shown from E¢13) that any front that
advances with a finite, nonvanishing spe@hd not only
those of the self-similar currentsust have the unique shape
(51). This fact is related to the existence of waiting-time w= 7 dn+1)
solutions(see[ 23], also[13] for a discussion of this problem
in the context of Newtonian liquidsit can be shown that if
the initial profile of the current near a front is of the form wherer=t+ A (andA denotes some arbitrary times also a

solution. Equation(60) can be viewed as giving the time
h(t=0)=X®, s=const, (52 evolution of the system starting from a well-defined initial
condition att=0,

is a constant of integration.

Remembering the fact that our original system is invariant
under time translatiotand also under space translation for
then=0 case, we realize that

Ao [ x | T DA
A—o(as) N2 = . (60
(00| 5 (60

several possibilities aris@of course, in general, the motion
will not be self-similar at the beginning (i) if 0<s
<\1/\,, the front begins to move at once with) infinite wo=A"4n+1)
velocity if 0<<s<\/\,, (b) finite velocity if s=\/\,, or
zero velocity ifA/N,<S<A1/\y; (i) if s=N1/\,, the front . , ,
begins to move after a finite waiting timg,, (i) if s ' Thg constant of mtegra_tlpm co'uld be determined by
>\1/\,, the front also begins to move after a finite waiting 'MPOSING & boundary condition. Without any loss of gener-
time t,,, but before that a discontinuity of the slope of the &lity, we assume that at=1, wo=0 giving
profile develops behind the frod corner shock This cor-
ner shock(more precisely, corner layeadvances towards AZU(U&MEA—%/A (62)
the front, which does not move until it is overtaken by the Ay ’
corner shock at=t,,. The experiments and the numerical
solutions of the governing equations support these concluvhich leads to
sions for the Newtonian ca$6,10].
o ()\z)x NNy
loZA) N }

1

Mg

Np /XN
A—a(a’5)m2<%> (61)

A

W=7 8(n+1)

MRSUSIVE
Afé)\ll}\_ 0
7_5

(63

VIIl. BOLTZMANN TRANSFORM FORMALISM

An alternative way of deriving solutions of the governing

equation(10) is based on seeking solutions of the form It can be easily verified that Eg63), with o=1, is equiva-

lent to the solution(31) and (32) (obtained in Sec. Il A
corresponding to the spread of a constant volume of liquid.
Substituting Eq(53) into Eq.(10), one finds that the con- Itis of Interest that the so!upon .d|splayed. in HGO) can .
dition be transformed into the waiting-time solution already dis-

cussed in Sec. Il B. For—0 (ort——A), A can be easily

ON1=uN,+1 (54) neglected in Eq(60) yielding

w=tAf(9), I=x/t°. (53

must be satisfied for E453) to be a solution. The resulting w( Teo):{_ ( )\2) 5x>\1r/%z (64

ordinary differential equation takes the form )\_1 t
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3.3 0.8
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297 0.2
I ! 1 I ! I I I 2
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FIG. 3. Theoreticalthis work and experimentdll4] profiles of
FIG. 2. Self-similar motion of the front of a waiting-time current Self-similar constant-volume currents. Triangles and circles repre-

for t>t,, (from Ref.[4]). sent measurements at two different times, both in the self-similar

regime. The theoretical profiles correspondNe-1 (Newtonian

liquid), A =1.164(which is the rheological index that gives the best

fit of the motion of the front, see Fig)2and\ =1.276[which gives

the best fit of the profile of the current, EQL)].

which is precisely the solution given by E@5). Notice that
in this derivation the solution is valid for either positiva (
=—|A|) or negative r, but it blows up at7=0 (t=
+|A|). Of course, the waiting-time solutid85) can be seen
as the special solution with the constant of integration
=0.

in [29] by means of a rotational viscometer; these measure-
ments show a Newtonian behavior for large strain rates
(102 s71 or larged, while for very small strain rates
(107° s 1 or less the behavior can be approximated by Eq.
(1) with A=1.6. The experiments ¢#,14] were performed
Based on a generalization of the lubrication approxima-during our research on waiting-time currefgse[5]) but the
tion [11], we have derived the governing equations that delse of the silicone putty was discontinued when we realized
scribe creeping gravity currents of non-Newtonian |iquidsthat its behavior was not Newtonian, and the results were not
having a power-law rheology. Currents that depend on dncluded in the cited reference. These measurements corre-
single horizontal coordinate have been considered, both ifPond to strain rates in the range between “1Gnd
Cartesian and in axial symmetry. The equations are of a nort0 > s™*, and the results of29] suggest that in this inter-
linear parabolic type, and differ from those for Newtonian mediate range a power-law rheology as Eg.can be used,
liquids in that they are nonlinear in the spatial derivative ofwith A around 1.2—1.3see Fig.(9) of [29]].
the thickness of the current. However, many properties of the We shall briefly describe the experiments[df14]; the
solutions are closely analogous to those for Newtonian rhefluid was contained in a rectangular perspex tray and the
ology [7,8]. In particular, the spreading relations for the cur-initial condition consisted of a wedge-shaped profile (
rents can also be expressed as power laws in time. The exX), which according to the discussion of Sec. VIl yields a
ponents, however, are functions of the rheological index, an#vaiting-time flow. The position of the front as well as the
thus differ from those corresponding to Newtonian liquids.thickness profile of the current were measured. To this pur-
The similarity solutions corresponding to currents whosepose the authors employed a sheet of laser light obtained by
volume varies as a power of time have been investigated. Fdneans of a slit and a cylindrical lens, to produce a well
the spread of a constant volume of liquid, analytic solutionslefined, narrow line on the surface of the current, whose
are obtained both for the Cartesian and for the axial symmémage was recorded and analyzed. This experimental setup
try. Solutions of the waiting-time type are found, as well asallowed us to measure the profile within an error of 0.3 mm.
steady flows from a constant source to a sink at a fixed poAs expected, after the fluid was released, a time intetyal
sition. General traveling-wave solutions have also been obensued during which the profile of the current changed but
tained in closed form, and analytic formulas for a simplethe front remained motionless. Att,,, the front started to
case are given. A general phase plane formalism, which amove. In Fig. 2 it can be observed that tort,,, the motion
lows us to systematically investigate the entire family of selfof the front follows very closely Eq(27), with §=0.182,
similar solutions, is introduced. The application of the Bolt- which corresponds to a rheological index 1.164. In Fig. 3
zmann transform for solving the governing equations iswe show the profiles of the current for two different mo-
briefly discussed. ments, within the self-similar regime, as well as the theoret-
There is a good agreement between the present theory afzhl profiles[Eq. (31)] corresponding ton=1, A=1.164,
some experimentst,14]. This can be appreciated in Figs. 2 andA=1.276(the latter is the value that gives the best fit of

IX. DISCUSSION AND FINAL REMARKS

and 3, which are based on measurem@fi$4] of constant-
volume waiting-time currents with plane symmetiry=0).

A silicone putty (Rodhorsil Gomme smpgale GSIR, manu-
factured by Rhoe-Poulenc, Frangdoaded with sand was

the experimental points and would resultdr 0.171); how-
ever, the difference between these values is not significant in
view of the experimental uncertainties. In conclusion, we
believe that there is a reasonable consistency between the

used. The rheological behavior of this putty was investigatedheoretical profile corresponding to the rheological index de-
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rived from the dynamicéFig. 2) of the current and the mea- Newtonian problem is self-similar. The dimensionality Af

sured profile, and both are consistent with the independermepends on the rheological indaxand, as a consequence,

determination ofz of Ref.[29], which lends support to the the spreading relations have rheology-dependent exponents.

theory presented here. It can also be observed that in theis interesting to observe that in most cases this dependence

experiments considered here, the difference between the rather weak, a fact that was already pointed out in a par-

Newtonian and the non-Newtonian profiles is small i6  ticular instance[16]. However, the differences between

close to unity, but significant. Newtonian and non-Newtonian currents are significant and
The analogy between the present results and those derivean be clearly observed in the experiments, notwithstanding

for Newtonian liquids(all of our solutions have their coun- that these experiments were not specifically designed to test

terparts in Newtonian rheologgan be traced to the fact that the theory.

the constitutive relatioril) introduces a single-dimensional

parameterA) into the problem, as happens in the case of a ACKNOWLEDGMENTS
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